To Train or Not To Train: Optimal Treatment Assignment Rules Using Welfare-to-Work Experiments
نویسنده
چکیده
To Train or Not To Train: Optimal Treatment Assignment Rules Using Welfare-to-Work Experiments Abstract: Planners often face the especially difficult and important task of assigning programs or treatments to optimize outcomes. Using the recent welfare-to-work reforms as an illustration, this paper considers the normative problem of how administrators might use data from randomized experiments to assign treatments. Under the new welfare system, state governments must design welfare programs to optimize employment. With experimental results in-hand, planners observe the average effect of training on employment but may not observe the individual effect of training. If the effect of a treatment varies across individuals, the planner faces a decision problem under ambiguity (Manski, 1998). In this setting, I find a straightforward proposition formalizes conditions under which a planner should reject particular decision rules as being inferior. An optimal decision rule, however, may not be revealed. In the absence of strong assumptions about the degree of heterogeneity in the population or the information known by the planner, the data are inconclusive about the efficacy of most assignment rules. Planners often face the especially difficult and important task of assigning programs or treatments to optimize outcomes. Using the recent welfare-to-work reforms as an illustration, this paper considers the normative problem of how administrators might use data from randomized experiments to assign treatments. Under the new welfare system, state governments must design welfare programs to optimize employment. With experimental results in-hand, planners observe the average effect of training on employment but may not observe the individual effect of training. If the effect of a treatment varies across individuals, the planner faces a decision problem under ambiguity (Manski, 1998). In this setting, I find a straightforward proposition formalizes conditions under which a planner should reject particular decision rules as being inferior. An optimal decision rule, however, may not be revealed. In the absence of strong assumptions about the degree of heterogeneity in the population or the information known by the planner, the data are inconclusive about the efficacy of most assignment rules.
منابع مشابه
Parameters Assignment of Electric Train Controller by Using Gravitational Search Optimization Algorithm
The speed profile of the train will be determined according to criteria such as safety, travel convenience, and the type of electric motor used for traction. Due to the passengers and cargo on the train, the electric train load is constantly changing. This will require reassigning the speed controller’s parameters of the electric train. For this purpose, the Gravitational Search optimization Al...
متن کاملConcurrent Locomotive Assignment and Freight Train Scheduling
The locomotive assignment and the freight train scheduling are important problems in railway transportation. Freight cars are coupled to form a freight rake. The freight rake becomes a train when a locomotive is coupled to it. The locomotive assignment problem assigns locomotives to a set of freight rakes in a way that, with minimum locomotive deadheading time, rake coupling delay and locomotiv...
متن کاملLocomotive assignment problem with train precedence using genetic algorithm
This paper aims to study the locomotive assignment problem which is very important for railway companies, in view of high cost of operating locomotives. This problem is to determine the minimum cost assignment of homogeneous locomotives located in some central depots to a set of pre-scheduled trains in order to provide sufficient power to pull the trains from their origins to their destinations...
متن کاملTrain Scheduling Problem - Phase II: A Simulation Integrated Genetic AlgorithmSystem
In [1] a feasible timetable generator stochastic simulation modeling framework for the train scheduling problem was developed to obtain a train timetable which includes train arrival and departure times at all visited stations and calculated average train travel time for all trains in the system. In this study, the framework is integrated with a genetic algorithm (GA) in order to get an optimal...
متن کاملRotor Design of IPMSM Traction Motor Based on Multi- Objective Optimization using BFGS Method and Train Motion Equations
In this paper a multiobjective optimal design method of interior permanent magnet synchronous motor ( IPMSM) for traction applications so as to maximize average torque and to minimize torque ripple has been presented. Based on train motion equations and physical properties of train, desired specifications such as steady state speed, rated output power, acceleration time and rated speed of tract...
متن کامل